Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A class of smooth, possibly data-adaptive nonparametric copula estimators containing the empirical beta copula (2106.10726v6)

Published 20 Jun 2021 in math.ST and stat.TH

Abstract: A broad class of smooth, possibly data-adaptive nonparametric copula estimators that contains empirical Bernstein copulas introduced by Sancetta and Satchell (and thus the empirical beta copula proposed by Segers, Sibuya and Tsukahara) is studied. Within this class, a subclass of estimators that depend on a scalar parameter determining the amount of marginal smoothing and a functional parameter controlling the shape of the smoothing region is specifically considered. Empirical investigations of the influence of these parameters suggest to focus on two particular data-adaptive smooth copula estimators that were found to be uniformly better than the empirical beta copula in all of the considered Monte Carlo experiments. Finally, with future applications to change-point detection in mind, conditions under which related sequential empirical copula processes converge weakly are provided.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.