Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Empirical Beta Copula (1607.04430v2)

Published 15 Jul 2016 in math.ST and stat.TH

Abstract: Given a sample from a multivariate distribution $F$, the uniform random variates generated independently and rearranged in the order specified by the componentwise ranks of the original sample look like a sample from the copula of $F$. This idea can be regarded as a variant on Baker's [J. Multivariate Anal. 99 (2008) 2312--2327] copula construction and leads to the definition of the empirical beta copula. The latter turns out to be a particular case of the empirical Bernstein copula, the degrees of all Bernstein polynomials being equal to the sample size. Necessary and sufficient conditions are given for a Bernstein polynomial to be a copula. These imply that the empirical beta copula is a genuine copula. Furthermore, the empirical process based on the empirical Bernstein copula is shown to be asymptotically the same as the ordinary empirical copula process under assumptions which are significantly weaker than those given in Janssen, Swanepoel and Veraverbeke [J. Stat. Plan. Infer. 142 (2012) 1189--1197]. A Monte Carlo simulation study shows that the empirical beta copula outperforms the empirical copula and the empirical checkerboard copula in terms of both bias and variance. Compared with the empirical Bernstein copula with the smoothing rate suggested by Janssen et al., its finite-sample performance is still significantly better in several cases, especially in terms of bias.

Summary

We haven't generated a summary for this paper yet.