Papers
Topics
Authors
Recent
2000 character limit reached

Graph Context Encoder: Graph Feature Inpainting for Graph Generation and Self-supervised Pretraining (2106.10124v1)

Published 18 Jun 2021 in cs.LG

Abstract: We propose the Graph Context Encoder (GCE), a simple but efficient approach for graph representation learning based on graph feature masking and reconstruction. GCE models are trained to efficiently reconstruct input graphs similarly to a graph autoencoder where node and edge labels are masked. In particular, our model is also allowed to change graph structures by masking and reconstructing graphs augmented by random pseudo-edges. We show that GCE can be used for novel graph generation, with applications for molecule generation. Used as a pretraining method, we also show that GCE improves baseline performances in supervised classification tasks tested on multiple standard benchmark graph datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.