Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs (2201.02534v1)

Published 7 Jan 2022 in cs.LG, cs.IR, and cs.SI

Abstract: We introduce a novel masked graph autoencoder (MGAE) framework to perform effective learning on graph structure data. Taking insights from self-supervised learning, we randomly mask a large proportion of edges and try to reconstruct these missing edges during training. MGAE has two core designs. First, we find that masking a high ratio of the input graph structure, e.g., $70\%$, yields a nontrivial and meaningful self-supervisory task that benefits downstream applications. Second, we employ a graph neural network (GNN) as an encoder to perform message propagation on the partially-masked graph. To reconstruct the large number of masked edges, a tailored cross-correlation decoder is proposed. It could capture the cross-correlation between the head and tail nodes of anchor edge in multi-granularity. Coupling these two designs enables MGAE to be trained efficiently and effectively. Extensive experiments on multiple open datasets (Planetoid and OGB benchmarks) demonstrate that MGAE generally performs better than state-of-the-art unsupervised learning competitors on link prediction and node classification.

Citations (33)

Summary

We haven't generated a summary for this paper yet.