Papers
Topics
Authors
Recent
2000 character limit reached

Orthogonal-Padé Activation Functions: Trainable Activation functions for smooth and faster convergence in deep networks (2106.09693v1)

Published 17 Jun 2021 in cs.NE, cs.AI, cs.CV, and cs.LG

Abstract: We have proposed orthogonal-Pad\'e activation functions, which are trainable activation functions and show that they have faster learning capability and improves the accuracy in standard deep learning datasets and models. Based on our experiments, we have found two best candidates out of six orthogonal-Pad\'e activations, which we call safe Hermite-Pade (HP) activation functions, namely HP-1 and HP-2. When compared to ReLU, HP-1 and HP-2 has an increment in top-1 accuracy by 5.06% and 4.63% respectively in PreActResNet-34, by 3.02% and 2.75% respectively in MobileNet V2 model on CIFAR100 dataset while on CIFAR10 dataset top-1 accuracy increases by 2.02% and 1.78% respectively in PreActResNet-34, by 2.24% and 2.06% respectively in LeNet, by 2.15% and 2.03% respectively in Efficientnet B0.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.