Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Periodic Infinite Frieze Patterns of Type $Λ_{p_1,\ldots,p_n}$ and Dissections on Annuli (2106.06679v1)

Published 12 Jun 2021 in math.CO

Abstract: Finite frieze patterns with entries in $\mathbb{Z}[\lambda_{p_1},\ldots,\lambda_{p_s}]$ where ${p_1,\ldots,p_s} \subseteq \mathbb{Z}{\geq 3}$ and $\lambda_p = 2 \cos(\pi/p)$ were shown to have a connection to dissected polygons by Holm and Jorgensen. We extend their work by studying the connection between infinite frieze patterns with such entries and dissections of annuli and once-punctured discs. We give an algorithm to determine whether a frieze pattern with entries in $\mathbb{Z}[\lambda{p_1},\ldots,\lambda_{p_s}]$, finite or infinite, comes from a dissected surface. We introduce quotient dissections as a realization for some frieze patterns unrealizable by an ordinary dissection. We also introduce two combinatorial interpretations for entries of frieze patterns from dissected surfaces. These interpretations are a generalization of matchings introduced by Broline, Crowe, and Isaacs for finite frieze patterns over $\mathbb{Z}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.