Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Friezes over $\mathbb Z[\sqrt{2}]$ (2307.00440v2)

Published 1 Jul 2023 in math.CO

Abstract: A frieze on a polygon is a map from the diagonals of the polygon to an integral domain which respects the Ptolemy relation. Conway and Coxeter previously studied positive friezes over $\mathbb{Z}$ and showed that they are in bijection with triangulations of a polygon. We extend their work by studying friezes over $\mathbb Z[\sqrt{2}]$ and their relationships to dissections of polygons. We largely focus on the characterization of unitary friezes that arise from dissecting a polygon into triangles and quadrilaterals. We identify a family of dissections that give rise to unitary friezes and conjecture that this gives a complete classification of dissections which admit a unitary frieze.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.