Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deterministic Mincut in Almost-Linear Time (2106.05513v1)

Published 10 Jun 2021 in cs.DS

Abstract: We present a deterministic (global) mincut algorithm for weighted, undirected graphs that runs in $m{1+o(1)}$ time, answering an open question of Karger from the 1990s. To obtain our result, we de-randomize the construction of the \emph{skeleton} graph in Karger's near-linear time mincut algorithm, which is its only randomized component. In particular, we partially de-randomize the well-known Benczur-Karger graph sparsification technique by random sampling, which we accomplish by the method of pessimistic estimators. Our main technical component is designing an efficient pessimistic estimator to capture the cuts of a graph, which involves harnessing the expander decomposition framework introduced in recent work by Goranci et al. (SODA 2021). As a side-effect, we obtain a structural representation of all approximate mincuts in a graph, which may have future applications.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.