Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal $k$-Edge-Connected Subgraphs in Weighted Graphs via Local Random Contraction (2302.02290v1)

Published 5 Feb 2023 in cs.DS

Abstract: The \emph{maximal $k$-edge-connected subgraphs} problem is a classical graph clustering problem studied since the 70's. Surprisingly, no non-trivial technique for this problem in weighted graphs is known: a very straightforward recursive-mincut algorithm with $\Omega(mn)$ time has remained the fastest algorithm until now. All previous progress gives a speed-up only when the graph is unweighted, and $k$ is small enough (e.g.~Henzinger~et~al.~(ICALP'15), Chechik~et~al.~(SODA'17), and Forster~et~al.~(SODA'20)). We give the first algorithm that breaks through the long-standing $\tilde{O}(mn)$-time barrier in \emph{weighted undirected} graphs. More specifically, we show a maximal $k$-edge-connected subgraphs algorithm that takes only $\tilde{O}(m\cdot\min{m{3/4},n{4/5}})$ time. As an immediate application, we can $(1+\epsilon)$-approximate the \emph{strength} of all edges in undirected graphs in the same running time. Our key technique is the first local cut algorithm with \emph{exact} cut-value guarantees whose running time depends only on the output size. All previous local cut algorithms either have running time depending on the cut value of the output, which can be arbitrarily slow in weighted graphs or have approximate cut guarantees.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chaitanya Nalam (3 papers)
  2. Thatchaphol Saranurak (77 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.