Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Helping results assessment by adding explainable elements to the deep relevance matching model (2106.05147v1)

Published 9 Jun 2021 in cs.IR and cs.HC

Abstract: In this paper we address the explainability of web search engines. We propose two explainable elements on the search engine result page: a visualization of query term weights and a visualization of passage relevance. The idea is that search engines that indicate to the user why results are retrieved are valued higher by users and gain user trust. We deduce the query term weights from the term gating network in the Deep Relevance Matching Model (DRMM) and visualize them as a doughnut chart. In addition, we train a passage-level ranker with DRMM that selects the most relevant passage from each document and shows it as snippet on the result page. Next to the snippet we show a document thumbnail with this passage highlighted. We evaluate the proposed interface in an online user study, asking users to judge the explainability and assessability of the interface. We found that users judge our proposed interface significantly more explainable and easier to assess than a regular search engine result page. However, they are not significantly better in selecting the relevant documents from the top-5. This indicates that the explainability of the search engine result page leads to a better user experience. Thus, we conclude that the proposed explainable elements are promising as visualization for search engine users.

Citations (8)

Summary

We haven't generated a summary for this paper yet.