Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational AutoEncoder for Reference based Image Super-Resolution (2106.04090v1)

Published 8 Jun 2021 in cs.CV and eess.IV

Abstract: In this paper, we propose a novel reference based image super-resolution approach via Variational AutoEncoder (RefVAE). Existing state-of-the-art methods mainly focus on single image super-resolution which cannot perform well on large upsampling factors, e.g., 8$\times$. We propose a reference based image super-resolution, for which any arbitrary image can act as a reference for super-resolution. Even using random map or low-resolution image itself, the proposed RefVAE can transfer the knowledge from the reference to the super-resolved images. Depending upon different references, the proposed method can generate different versions of super-resolved images from a hidden super-resolution space. Besides using different datasets for some standard evaluations with PSNR and SSIM, we also took part in the NTIRE2021 SR Space challenge and have provided results of the randomness evaluation of our approach. Compared to other state-of-the-art methods, our approach achieves higher diverse scores.

Citations (38)

Summary

We haven't generated a summary for this paper yet.