Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Equal Gender Representation in the Annotations of Toxic Language Detection (2106.02183v1)

Published 4 Jun 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Classifiers tend to propagate biases present in the data on which they are trained. Hence, it is important to understand how the demographic identities of the annotators of comments affect the fairness of the resulting model. In this paper, we focus on the differences in the ways men and women annotate comments for toxicity, investigating how these differences result in models that amplify the opinions of male annotators. We find that the BERT model as-sociates toxic comments containing offensive words with male annotators, causing the model to predict 67.7% of toxic comments as having been annotated by men. We show that this disparity between gender predictions can be mitigated by removing offensive words and highly toxic comments from the training data. We then apply the learned associations between gender and language to toxic language classifiers, finding that models trained exclusively on female-annotated data perform 1.8% better than those trained solely on male-annotated data and that training models on data after removing all offensive words reduces bias in the model by 55.5% while increasing the sensitivity by 0.4%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Elizabeth Excell (1 paper)
  2. Noura Al Moubayed (40 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.