Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Partial Graph Reasoning for Neural Network Regularization (2106.01805v2)

Published 3 Jun 2021 in cs.LG and cs.CV

Abstract: Regularizers help deep neural networks prevent feature co-adaptations. Dropout, as a commonly used regularization technique, stochastically disables neuron activations during network optimization. However, such complete feature disposal can affect the feature representation and network understanding. Toward better descriptions of latent representations, we present DropGraph that learns a regularization function by constructing a stand-alone graph from the backbone features. DropGraph first samples stochastic spatial feature vectors and then incorporates graph reasoning methods to generate feature map distortions. This add-on graph regularizes the network during training and can be completely skipped during inference. We provide intuitions on the linkage between graph reasoning and Dropout with further discussions on how partial graph reasoning method reduces feature correlations. To this end, we extensively study the modeling of graph vertex dependencies and the utilization of the graph for distorting backbone feature maps. DropGraph was validated on 4 tasks with a total of 8 different datasets. The experimental results show that our method outperforms other state-of-the-art regularizers while leaving the base model structure unmodified during inference.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube