Papers
Topics
Authors
Recent
Search
2000 character limit reached

Revisiting Structured Dropout

Published 5 Oct 2022 in cs.LG, cs.AI, and cs.CL | (2210.02570v1)

Abstract: Large neural networks are often overparameterised and prone to overfitting, Dropout is a widely used regularization technique to combat overfitting and improve model generalization. However, unstructured Dropout is not always effective for specific network architectures and this has led to the formation of multiple structured Dropout approaches to improve model performance and, sometimes, reduce the computational resources required for inference. In this work, we revisit structured Dropout comparing different Dropout approaches to natural language processing and computer vision tasks for multiple state-of-the-art networks. Additionally, we devise an approach to structured Dropout we call \textbf{\emph{ProbDropBlock}} which drops contiguous blocks from feature maps with a probability given by the normalized feature salience values. We find that with a simple scheduling strategy the proposed approach to structured Dropout consistently improved model performance compared to baselines and other Dropout approaches on a diverse range of tasks and models. In particular, we show \textbf{\emph{ProbDropBlock}} improves RoBERTa finetuning on MNLI by $0.22\%$, and training of ResNet50 on ImageNet by $0.28\%$.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.