Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Law-invariant functionals that collapse to the mean: Beyond convexity (2106.01281v2)

Published 2 Jun 2021 in q-fin.MF, math.PR, and q-fin.RM

Abstract: We establish general "collapse to the mean" principles that provide conditions under which a law-invariant functional reduces to an expectation. In the convex setting, we retrieve and sharpen known results from the literature. However, our results also apply beyond the convex setting. We illustrate this by providing a complete account of the "collapse to the mean" for quasiconvex functionals. In the special cases of consistent risk measures and Choquet integrals, we can even dispense with quasiconvexity. In addition, we relate the "collapse to the mean" to the study of solutions of a broad class of optimisation problems with law-invariant objectives that appear in mathematical finance, insurance, and economics. We show that the corresponding quantile formulations studied in the literature are sometimes illegitimate and require further analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.