Papers
Topics
Authors
Recent
2000 character limit reached

Implementing a foveal-pit inspired filter in a Spiking Convolutional Neural Network: a preliminary study

Published 29 May 2021 in cs.CV and cs.AI | (2105.14326v1)

Abstract: We have presented a Spiking Convolutional Neural Network (SCNN) that incorporates retinal foveal-pit inspired Difference of Gaussian filters and rank-order encoding. The model is trained using a variant of the backpropagation algorithm adapted to work with spiking neurons, as implemented in the Nengo library. We have evaluated the performance of our model on two publicly available datasets - one for digit recognition task, and the other for vehicle recognition task. The network has achieved up to 90% accuracy, where loss is calculated using the cross-entropy function. This is an improvement over around 57% accuracy obtained with the alternate approach of performing the classification without any kind of neural filtering. Overall, our proof-of-concept study indicates that introducing biologically plausible filtering in existing SCNN architecture will work well with noisy input images such as those in our vehicle recognition task. Based on our results, we plan to enhance our SCNN by integrating lateral inhibition-based redundancy reduction prior to rank-ordering, which will further improve the classification accuracy by the network.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.