Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Spiking Approach Compared to Deep Feedforward Networks on Stepwise Pixel Erasement (1912.03201v1)

Published 6 Dec 2019 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: In real world scenarios, objects are often partially occluded. This requires a robustness for object recognition against these perturbations. Convolutional networks have shown good performances in classification tasks. The learned convolutional filters seem similar to receptive fields of simple cells found in the primary visual cortex. Alternatively, spiking neural networks are more biological plausible. We developed a two layer spiking network, trained on natural scenes with a biologically plausible learning rule. It is compared to two deep convolutional neural networks using a classification task of stepwise pixel erasement on MNIST. In comparison to these networks the spiking approach achieves good accuracy and robustness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.