Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A data-driven Reconstruction of Horndeski gravity via the Gaussian processes (2105.12970v2)

Published 27 May 2021 in astro-ph.CO and gr-qc

Abstract: We reconstruct the Hubble function from cosmic chronometers, supernovae, and baryon acoustic oscillations compiled data sets via the Gaussian process (GP) method and use it to draw out Horndeski theories that are fully anchored on expansion history data. In particular, we consider three well-established formalisms of Horndeski gravity which single out a potential through the expansion data, namely: quintessence potential, designer Horndeski, and tailoring Horndeski. We discuss each method in detail and complement it with the GP reconstructed Hubble function to obtain predictive constraints on the potentials and the dark energy equation of state.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.