Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single-Layer Vision Transformers for More Accurate Early Exits with Less Overhead (2105.09121v3)

Published 19 May 2021 in cs.LG and cs.CV

Abstract: Deploying deep learning models in time-critical applications with limited computational resources, for instance in edge computing systems and IoT networks, is a challenging task that often relies on dynamic inference methods such as early exiting. In this paper, we introduce a novel architecture for early exiting based on the vision transformer architecture, as well as a fine-tuning strategy that significantly increase the accuracy of early exit branches compared to conventional approaches while introducing less overhead. Through extensive experiments on image and audio classification as well as audiovisual crowd counting, we show that our method works for both classification and regression problems, and in both single- and multi-modal settings. Additionally, we introduce a novel method for integrating audio and visual modalities within early exits in audiovisual data analysis, that can lead to a more fine-grained dynamic inference.

Citations (29)

Summary

We haven't generated a summary for this paper yet.