Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Spatio-Temporal Model for Predicting Wind Speeds in Southern California (2105.06966v1)

Published 14 May 2021 in stat.AP and stat.OT

Abstract: The share of wind power in fuel mixes worldwide has increased considerably. The main ingredient when deriving wind power predictions are wind speed data; the closer to the wind farms, the better they forecast the power supply. The current paper proposes a hybrid model for predicting wind speeds at convenient locations. It is then applied to Southern California power price area. We build random fields with time series of gridded historical forecasts and actual wind speed observations. We estimate with ordinary kriging the spatial variability of the temporal parameters and derive predictions. The advantages of this work are twofold: (1) an accurate daily wind speed forecast at any location in the area and (2) a general method applicable to other markets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.