Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using the lasso method for space-time short-term wind speed predictions (1501.06406v2)

Published 26 Jan 2015 in stat.AP

Abstract: Accurate wind power forecasts depend on reliable wind speed forecasts. Numerical Weather Predictions (NWPs) utilize huge amounts of computing time, but still have rather low spatial and temporal resolution. However, stochastic wind speed forecasts perform well in rather high temporal resolution settings. They consume comparably little computing resources and return reliable forecasts, if forecasting horizons are not too long. In the recent literature, spatial interdependence is increasingly taken into consideration. In this paper we propose a new and quite flexible multivariate model that accounts for neighbouring weather stations' information and as such, exploits spatial data at a high resolution. The model is applied to forecasting horizons of up to one day and is capable of handling a high resolution temporal structure. We use a periodic vector autoregressive model with seasonal lags to account for the interaction of the explanatory variables. Periodicity is considered and is modelled by cubic B-splines. Due to the model's flexibility, the number of explanatory variables becomes huge. Therefore, we utilize time-saving shrinkage methods like lasso and elastic net for estimation. Particularly, a relatively newly developed iteratively re-weighted lasso and elastic net is applied that also incorporates heteroscedasticity. We compare our model to several benchmarks. The out-of-sample forecasting results show that the exploitation of spatial information increases the forecasting accuracy tremendously, in comparison to models in use so far.

Summary

We haven't generated a summary for this paper yet.