Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Racah algebras, the centralizer $Z_n(\mathfrak{sl}_2)$ and its Hilbert-Poincaré series (2105.01086v1)

Published 3 May 2021 in math.RT, math-ph, and math.MP

Abstract: The higher rank Racah algebra $R(n)$ introduced recently is recalled. A quotient of this algebra by central elements, which we call the special Racah algebra $sR(n)$, is then introduced. Using results from classical invariant theory, this $sR(n)$ algebra is shown to be isomorphic to the centralizer $Z_{n}(\mathfrak{sl}2)$ of the diagonal embedding of $U(\mathfrak{sl}_2)$ in $U(\mathfrak{sl}_2){\otimes n}$. This leads to a first and novel presentation of the centralizer $Z{n}(\mathfrak{sl}_2)$ in terms of generators and defining relations. An explicit formula of its Hilbert-Poincar\'e series is also obtained and studied. The extension of the results to the study of the special Askey-Wilson algebra and its higher rank generalizations is discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.