Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Calabi-Yau algebra with $E_6$ symmetry and the Clebsch-Gordan series of $sl(3)$ (2005.13444v2)

Published 27 May 2020 in math.RT, math-ph, and math.MP

Abstract: Building on classical invariant theory, it is observed that the polarised traces generate the centraliser $Z_L(sl(N))$ of the diagonal embedding of $U(sl(N))$ in $U(sl(N)){\otimes L}$. The paper then focuses on $sl(3)$ and the case $L=2$. A Calabi--Yau algebra $\mathcal{A}$ with three generators is introduced and explicitly shown to possess a PBW basis and a certain central element. It is seen that $Z_2(sl(3))$ is isomorphic to a quotient of the algebra $\mathcal{A}$ by a single explicit relation fixing the value of the central element. Upon concentrating on three highest weight representations occurring in the Clebsch--Gordan series of $U(sl(3))$, a specialisation of $\mathcal{A}$ arises, involving the pairs of numbers characterising the three highest weights. In this realisation in $U(sl(3))\otimes U(sl(3))$, the coefficients in the defining relations and the value of the central element have degrees that correspond to the fundamental degrees of the Weyl group of type $E_6$. With the correct association between the six parameters of the representations and some roots of $E_6$, the symmetry under the full Weyl group of type $E_6$ is made manifest. The coefficients of the relations and the value of the central element in the realisation in $U(sl(3))\otimes U(sl(3))$ are expressed in terms of the fundamental invariant polynomials associated to $E_6$. It is also shown that the relations of the algebra $\mathcal{A}$ can be realised with Heun type operators in the Racah or Hahn algebra.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.