Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Cleaning Label Noise with Clusters for Minimally Supervised Anomaly Detection (2104.14770v1)

Published 30 Apr 2021 in cs.CV

Abstract: Learning to detect real-world anomalous events using video-level annotations is a difficult task mainly because of the noise present in labels. An anomalous labelled video may actually contain anomaly only in a short duration while the rest of the video can be normal. In the current work, we formulate a weakly supervised anomaly detection method that is trained using only video-level labels. To this end, we propose to utilize binary clustering which helps in mitigating the noise present in the labels of anomalous videos. Our formulation encourages both the main network and the clustering to complement each other in achieving the goal of weakly supervised training. The proposed method yields 78.27% and 84.16% frame-level AUC on UCF-crime and ShanghaiTech datasets respectively, demonstrating its superiority over existing state-of-the-art algorithms.

Citations (29)

Summary

We haven't generated a summary for this paper yet.