Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Video Salient Object Detection via Adaptive Local-Global Refinement (2104.14360v3)

Published 29 Apr 2021 in cs.CV

Abstract: Video salient object detection (VSOD) is an important task in many vision applications. Reliable VSOD requires to simultaneously exploit the information from both the spatial domain and the temporal domain. Most of the existing algorithms merely utilize simple fusion strategies, such as addition and concatenation, to merge the information from different domains. Despite their simplicity, such fusion strategies may introduce feature redundancy, and also fail to fully exploit the relationship between multi-level features extracted from both spatial and temporal domains. In this paper, we suggest an adaptive local-global refinement framework for VSOD. Different from previous approaches, we propose a local refinement architecture and a global one to refine the simply fused features with different scopes, which can fully explore the local dependence and the global dependence of multi-level features. In addition, to emphasize the effective information and suppress the useless one, an adaptive weighting mechanism is designed based on graph convolutional neural network (GCN). We show that our weighting methodology can further exploit the feature correlations, thus driving the network to learn more discriminative feature representation. Extensive experimental results on public video datasets demonstrate the superiority of our method over the existing ones.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube