Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semi-On-Policy Training for Sample Efficient Multi-Agent Policy Gradients (2104.13446v2)

Published 27 Apr 2021 in cs.LG and cs.MA

Abstract: Policy gradient methods are an attractive approach to multi-agent reinforcement learning problems due to their convergence properties and robustness in partially observable scenarios. However, there is a significant performance gap between state-of-the-art policy gradient and value-based methods on the popular StarCraft Multi-Agent Challenge (SMAC) benchmark. In this paper, we introduce semi-on-policy (SOP) training as an effective and computationally efficient way to address the sample inefficiency of on-policy policy gradient methods. We enhance two state-of-the-art policy gradient algorithms with SOP training, demonstrating significant performance improvements. Furthermore, we show that our methods perform as well or better than state-of-the-art value-based methods on a variety of SMAC tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.