Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bijective enumeration of planar bipartite maps with three tight boundaries, or how to slice pairs of pants (2104.10084v2)

Published 20 Apr 2021 in math.CO, math-ph, math.MP, and math.PR

Abstract: We consider planar maps with three boundaries, colloquially called pairs of pants. In the case of bipartite maps with controlled face degrees, a simple expression for their generating function was found by Eynard and proved bijectively by Collet and Fusy. In this paper, we obtain an even simpler formula for \emph{tight} pairs of pants, namely for maps whose boundaries have minimal length in their homotopy class. We follow a bijective approach based on the slice decomposition, which we extend by introducing new fundamental building blocks called bigeodesic triangles and diangles, and by working on the universal cover of the triply punctured sphere. We also discuss the statistics of the lengths of minimal separating loops in (non necessarily tight) pairs of pants and annuli, and their asymptotics in the large volume limit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.