Bayesian statistical framework for identifying strongly lensed gravitational-wave signals (2104.09339v2)
Abstract: It is expected that gravitational waves, similar to electromagnetic waves, can be gravitationally lensed by intervening matters, producing multiple instances of the same signal arriving at different times from different apparent luminosity distances with different phase shifts compared to the un-lensed signal due to lensing. If unaccounted for, these lensed signals will masquerade as separate systems with higher mass and lower redshift. Here we present a Bayesian statistical framework for identifying strongly-lensed gravitational-wave signals that incorporates astrophysical information and accounts for selection effects. We also propose a two-step hierarchical analysis for more efficient computations of the probabilities and inferences of source parameters free from bias introduced by lensing. We show with examples on how changing the astrophysical models could shift one's interpretation on the origin of the observed gravitational waves, and possibly lead to indisputable evidence of strong lensing of the observed waves. In addition, we demonstrate the improvement in the sky localization of the source of the lensed signals, and in some cases the identification of the Morse indices of the lensed signals. If confirmed, lensed gravitational waves will allow us to probe the Universe at higher redshift, and to constrain the polarization contents of the waves with fewer detectors.
- M. Oguri, Strong gravitational lensing of explosive transients, Rept. Prog. Phys. 82, 126901 (2019), arXiv:1907.06830 [astro-ph.CO] .
- R. Takahashi and T. Nakamura, Wave effects in gravitational lensing of gravitational waves from chirping binaries, Astrophys. J. 595, 1039 (2003), arXiv:astro-ph/0305055 .
- L. Dai and T. Venumadhav, On the waveforms of gravitationally lensed gravitational waves,  (2017), arXiv:1702.04724 [gr-qc] .
- J. Aasi et al. (LIGO Scientific), Advanced LIGO, Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
- F. Acernese et al. (VIRGO), Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
- M. Oguri, Effect of gravitational lensing on the distribution of gravitational waves from distant binary black hole mergers, Mon. Not. Roy. Astron. Soc. 480, 3842 (2018), arXiv:1807.02584 [astro-ph.CO] .
- X. Liu, I. M. Hernandez, and J. Creighton, Identifying strong gravitational-wave lensing during the second observing run of Advanced LIGO and Advanced Virgo, Astrophys. J. 908, 97 (2021), arXiv:2009.06539 [astro-ph.HE] .
- C. Messick et al., Analysis Framework for the Prompt Discovery of Compact Binary Mergers in Gravitational-wave Data, Phys. Rev. D 95, 042001 (2017), arXiv:1604.04324 [astro-ph.IM] .
- S. Sachdev et al., The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO’s Second and Advanced Virgo’s First Observing Runs,  (2019), arXiv:1901.08580 [gr-qc] .
- S. A. Usman et al., The PyCBC search for gravitational waves from compact binary coalescence, Class. Quant. Grav. 33, 215004 (2016), arXiv:1508.02357 [gr-qc] .
- P. A. R. Ade et al. (Planck), Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, Astrophys. J. Lett. 882, L24 (2019), arXiv:1811.12940 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog,  (2020a), arXiv:2010.14533 [astro-ph.HE] .
- L. P. Singer, D. A. Goldstein, and J. S. Bloom, The Two LIGO/Virgo Binary Black Hole Mergers on 2019 August 28 Were Not Strongly Lensed,  (2019), arXiv:1910.03601 [astro-ph.CO] .
- S. Hou, X.-L. Fan, and Z.-H. Zhu, Gravitational Lensing of Gravitational Waves: Rotation of Polarization Plane, Phys. Rev. D 100, 064028 (2019), arXiv:1907.07486 [gr-qc] .
- I. Mandel, W. M. Farr, and J. R. Gair, Extracting distribution parameters from multiple uncertain observations with selection biases, Mon. Not. Roy. Astron. Soc. 486, 1086 (2019), arXiv:1809.02063 [physics.data-an] .
- J. S. Liu, The collapsed gibbs sampler in bayesian computations with applications to a gene regulation problem, Journal of the American Statistical Association 89, 958 (1994).
- G. Pratten et al., Let’s twist again: computationally efficient models for the dominant and sub-dominant harmonic modes of precessing binary black holes,  (2020), arXiv:2004.06503 [gr-qc] .
- G. Ashton et al., BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy, Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
- J. S. Speagle, dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences, Mon. Not. Roy. Astron. Soc. 493, 3132 (2020), arXiv:1904.02180 [astro-ph.IM] .
- Bilby: A user-friendly bayesian inference library, https://git.ligo.org/lscsoft/bilby/-/tree/1.0.2 (2020).
- parallel_bilby: A python package to run gravitational wave inference analyses on multiple cores of a machine using their message passing interface, https://git.ligo.org/lscsoft/parallel_bilby/-/tree/0.1.5 (2020).
- hanabi: Hierarchical bayesian analysis on lensed gw signals using bilby, https://github.com/ricokaloklo/hanabi/tree/0.3.1 (2021).
- Advanced LIGO anticipated sensitivity curves, https://dcc.ligo.org/LIGO-T1800044/public.
- D. Gerosa, G. Pratten, and A. Vecchio, Gravitational-wave selection effects using neural-network classifiers, Phys. Rev. D 102, 103020 (2020), arXiv:2007.06585 [astro-ph.HE] .
- N. Seto, Strong gravitational lensing and localization of merging massive black hole binaries with LISA, Phys. Rev. D 69, 022002 (2004), arXiv:astro-ph/0305605 .
- R. Abbott et al. (LIGO Scientific, Virgo), Properties and Astrophysical Implications of the 150 M⊙direct-product{}_{\odot}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT Binary Black Hole Merger GW190521, Astrophys. J. Lett. 900, L13 (2020b), arXiv:2009.01190 [astro-ph.HE] .
- S. Stevenson, C. P. L. Berry, and I. Mandel, Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments, Mon. Not. Roy. Astron. Soc. 471, 2801 (2017), arXiv:1703.06873 [astro-ph.HE] .
- T. Nakamura et al., Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes, PTEP 2016, 093E01 (2016), arXiv:1607.00897 [astro-ph.HE] .
- S. M. Koushiappas and A. Loeb, Maximum redshift of gravitational wave merger events, Phys. Rev. Lett. 119, 221104 (2017), arXiv:1708.07380 [astro-ph.CO] .
- D. Foreman-Mackey, corner.py: Scatterplot matrices in python, The Journal of Open Source Software 1, 24 (2016).
- V. Tiwari, Estimation of the Sensitive Volume for Gravitational-wave Source Populations Using Weighted Monte Carlo Integration, Class. Quant. Grav. 35, 145009 (2018), arXiv:1712.00482 [astro-ph.HE] .
- W. M. Farr, Accuracy Requirements for Empirically Measured Selection Functions, Research Notes of the American Astronomical Society 3, 66 (2019), arXiv:1904.10879 [astro-ph.IM] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.