Papers
Topics
Authors
Recent
Search
2000 character limit reached

Kernel Adversarial Learning for Real-world Image Super-resolution

Published 19 Apr 2021 in cs.CV | (2104.09008v3)

Abstract: Current deep image super-resolution (SR) approaches aim to restore high-resolution images from down-sampled images or by assuming degradation from simple Gaussian kernels and additive noises. However, these techniques only assume crude approximations of the real-world image degradation process, which should involve complex kernels and noise patterns that are difficult to model using simple assumptions. In this paper, we propose a more realistic process to synthesise low-resolution images for real-world image SR by introducing a new Kernel Adversarial Learning Super-resolution (KASR) framework. In the proposed framework, degradation kernels and noises are adaptively modelled rather than explicitly specified. Moreover, we also propose a high-frequency selective objective and an iterative supervision process to further boost the model SR reconstruction accuracy. Extensive experiments validate the effectiveness of the proposed framework on real-world datasets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.