Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
32 tokens/sec
GPT-4o
87 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
435 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Human-Imitating Metrics for Training and Evaluating Privacy Preserving Emotion Recognition Models Using Sociolinguistic Knowledge (2104.08792v2)

Published 18 Apr 2021 in cs.CL and cs.HC

Abstract: Privacy preservation is a crucial component of any real-world application. But, in applications relying on machine learning backends, privacy is challenging because models often capture more than what the model was initially trained for, resulting in the potential leakage of sensitive information. In this paper, we propose an automatic and quantifiable metric that allows us to evaluate humans' perception of a model's ability to preserve privacy with respect to sensitive variables. In this paper, we focus on saliency-based explanations, explanations that highlight regions of the input text, to infer internal workings of a black box model. We use the degree with which differences in interpretation of general vs privacy preserving models correlate with sociolinguistic biases to inform metric design. We show how certain commonly-used methods that seek to preserve privacy do not align with human perception of privacy preservation leading to distrust about model's claims. We demonstrate the versatility of our proposed metric by validating its utility for measuring cross corpus generalization for both privacy and emotion. Finally, we conduct crowdsourcing experiments to evaluate the inclination of the evaluators to choose a particular model for a given purpose when model explanations are provided, and show a positive relationship with the proposed metric. To the best of our knowledge, we take the first step in proposing automatic and quantifiable metrics that best align with human perception of model's ability for privacy preservation, allowing for cost-effective model development.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to a collection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube