Papers
Topics
Authors
Recent
2000 character limit reached

Fast Private Parameter Learning and Inference for Sum-Product Networks (2104.07353v2)

Published 15 Apr 2021 in cs.LG and cs.CR

Abstract: A sum-product network (SPN) is a graphical model that allows several types of inferences to be drawn efficiently. There are two types of learning for SPNs: Learning the architecture of the model, and learning the parameters. In this paper, we tackle the second problem: We show how to learn the weights for the sum nodes, assuming the architecture is fixed, and the data is horizontally partitioned between multiple parties. The computations will preserve the privacy of each participant. Furthermore, we will use secret sharing instead of (homomorphic) encryption, which allows fast computations and requires little computational resources. To this end, we use a novel integer division to compute approximate real divisions. We also show how simple and private inferences can be performed using the learned SPN.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.