Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ABEM: An Adaptive Agent-based Evolutionary Approach for Mining Influencers in Online Social Networks (2104.06563v1)

Published 14 Apr 2021 in cs.SI and cs.AI

Abstract: A key step in influence maximization in online social networks is the identification of a small number of users, known as influencers, who are able to spread influence quickly and widely to other users. The evolving nature of the topological structure of these networks makes it difficult to locate and identify these influencers. In this paper, we propose an adaptive agent-based evolutionary approach to address this problem in the context of both static and dynamic networks. This approach is shown to be able to adapt the solution as the network evolves. It is also applicable to large-scale networks due to its distributed framework. Evaluation of our approach is performed by using both synthetic networks and real-world datasets. Experimental results demonstrate that the proposed approach outperforms state-of-the-art seeding algorithms in terms of maximizing influence.

Citations (1)

Summary

We haven't generated a summary for this paper yet.