Papers
Topics
Authors
Recent
2000 character limit reached

Learning to recover orientations from projections in single-particle cryo-EM

Published 13 Apr 2021 in cs.LG, cs.CV, q-bio.QM, and stat.ML | (2104.06237v1)

Abstract: A major challenge in single-particle cryo-electron microscopy (cryo-EM) is that the orientations adopted by the 3D particles prior to imaging are unknown; yet, this knowledge is essential for high-resolution reconstruction. We present a method to recover these orientations directly from the acquired set of 2D projections. Our approach consists of two steps: (i) the estimation of distances between pairs of projections, and (ii) the recovery of the orientation of each projection from these distances. In step (i), pairwise distances are estimated by a Siamese neural network trained on synthetic cryo-EM projections from resolved bio-structures. In step (ii), orientations are recovered by minimizing the difference between the distances estimated from the projections and the distances induced by the recovered orientations. We evaluated the method on synthetic cryo-EM datasets. Current results demonstrate that orientations can be accurately recovered from projections that are shifted and corrupted with a high level of noise. The accuracy of the recovery depends on the accuracy of the distance estimator. While not yet deployed in a real experimental setup, the proposed method offers a novel learning-based take on orientation recovery in SPA. Our code is available at https://github.com/JelenaBanjac/protein-reconstruction

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.