Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CXR Segmentation by AdaIN-based Domain Adaptation and Knowledge Distillation (2104.05892v4)

Published 13 Apr 2021 in eess.IV, cs.CV, and cs.LG

Abstract: As segmentation labels are scarce, extensive researches have been conducted to train segmentation networks with domain adaptation, semi-supervised or self-supervised learning techniques to utilize abundant unlabeled dataset. However, these approaches appear different from each other, so it is not clear how these approaches can be combined for better performance. Inspired by recent multi-domain image translation approaches, here we propose a novel segmentation framework using adaptive instance normalization (AdaIN), so that a single generator is trained to perform both domain adaptation and semi-supervised segmentation tasks via knowledge distillation by simply changing task-specific AdaIN codes. Specifically, our framework is designed to deal with difficult situations in chest X-ray radiograph (CXR) segmentation, where labels are only available for normal data, but the trained model should be applied to both normal and abnormal data. The proposed network demonstrates great generalizability under domain shift and achieves the state-of-the-art performance for abnormal CXR segmentation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.