Papers
Topics
Authors
Recent
Search
2000 character limit reached

Instagram Filter Removal on Fashionable Images

Published 11 Apr 2021 in cs.CV | (2104.05072v1)

Abstract: Social media images are generally transformed by filtering to obtain aesthetically more pleasing appearances. However, CNNs generally fail to interpret both the image and its filtered version as the same in the visual analysis of social media images. We introduce Instagram Filter Removal Network (IFRNet) to mitigate the effects of image filters for social media analysis applications. To achieve this, we assume any filter applied to an image substantially injects a piece of additional style information to it, and we consider this problem as a reverse style transfer problem. The visual effects of filtering can be directly removed by adaptively normalizing external style information in each level of the encoder. Experiments demonstrate that IFRNet outperforms all compared methods in quantitative and qualitative comparisons, and has the ability to remove the visual effects to a great extent. Additionally, we present the filter classification performance of our proposed model, and analyze the dominant color estimation on the images unfiltered by all compared methods.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.