Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Label-GCN: An Effective Method for Adding Label Propagation to Graph Convolutional Networks (2104.02153v1)

Published 5 Apr 2021 in cs.LG

Abstract: We show that a modification of the first layer of a Graph Convolutional Network (GCN) can be used to effectively propagate label information across neighbor nodes, for binary and multi-class classification problems. This is done by selectively eliminating self-loops for the label features during the training phase of a GCN. The GCN architecture is otherwise unchanged, without any extra hyper-parameters, and can be used in both a transductive and inductive setting. We show through several experiments that, depending on how many labels are available during the inference phase, this strategy can lead to a substantial improvement in the model performance compared to a standard GCN approach, including with imbalanced datasets.

Citations (8)

Summary

We haven't generated a summary for this paper yet.