Papers
Topics
Authors
Recent
Search
2000 character limit reached

A unified framework for non-negative matrix and tensor factorisations with a smoothed Wasserstein loss

Published 4 Apr 2021 in stat.ML, cs.LG, and math.OC | (2104.01708v2)

Abstract: Non-negative matrix and tensor factorisations are a classical tool for finding low-dimensional representations of high-dimensional datasets. In applications such as imaging, datasets can be regarded as distributions supported on a space with metric structure. In such a setting, a loss function based on the Wasserstein distance of optimal transportation theory is a natural choice since it incorporates the underlying geometry of the data. We introduce a general mathematical framework for computing non-negative factorisations of both matrices and tensors with respect to an optimal transport loss. We derive an efficient computational method for its solution using a convex dual formulation, and demonstrate the applicability of this approach with several numerical illustrations with both matrix and tensor-valued data.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.