Papers
Topics
Authors
Recent
Search
2000 character limit reached

Revisiting Indirect Ontology Alignment : New Challenging Issues in Cross-Lingual Context

Published 4 Apr 2021 in cs.AI and cs.IR | (2104.01628v1)

Abstract: Ontology alignment process is overwhelmingly cited in Knowledge Engineering as a key mechanism aimed at bypassing heterogeneity and reconciling various data sources, represented by ontologies, i.e., the the Semantic Web cornerstone. In such infrastructures and environments, it is inconceivable to assume that all ontologies covering a particular domain of knowledge are aligned in pairs. Moreover, the high performance of alignment approaches is closely related to two factors, i.e., time consumption and machine resource limitations. Thus, good quality alignments are valuable and it would be appropriate to exploit them. Based on this observation, this article introduces a new method of indirect alignment of ontologies in a cross-lingual context. Indeed, the proposed method deals with alignments of multilingual ontologies and implements an indirect ontology alignment strategy based on a composition and reuse of effective direct alignments. The trigger of the proposed method process is based on alignment algebra which governs the semantics composition of relationships and confidence values. The obtained results, after a thorough and detailed experiment are very encouraging and highlight many positive aspects about the new proposed method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.