Papers
Topics
Authors
Recent
2000 character limit reached

Ontology Matching with Knowledge Rules

Published 11 Jul 2015 in cs.AI | (1507.03097v1)

Abstract: Ontology matching is the process of automatically determining the semantic equivalences between the concepts of two ontologies. Most ontology matching algorithms are based on two types of strategies: terminology-based strategies, which align concepts based on their names or descriptions, and structure-based strategies, which exploit concept hierarchies to find the alignment. In many domains, there is additional information about the relationships of concepts represented in various ways, such as Bayesian networks, decision trees, and association rules. We propose to use the similarities between these relationships to find more accurate alignments. We accomplish this by defining soft constraints that prefer alignments where corresponding concepts have the same local relationships encoded as knowledge rules. We use a probabilistic framework to integrate this new knowledge-based strategy with standard terminology-based and structure-based strategies. Furthermore, our method is particularly effective in identifying correspondences between complex concepts. Our method achieves substantially better F-score than the previous state-of-the-art on three ontology matching domains.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.