Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Class Multi-Instance Count Conditioned Adversarial Image Generation (2103.16795v1)

Published 31 Mar 2021 in cs.CV and cs.LG

Abstract: Image generation has rapidly evolved in recent years. Modern architectures for adversarial training allow to generate even high resolution images with remarkable quality. At the same time, more and more effort is dedicated towards controlling the content of generated images. In this paper, we take one further step in this direction and propose a conditional generative adversarial network (GAN) that generates images with a defined number of objects from given classes. This entails two fundamental abilities (1) being able to generate high-quality images given a complex constraint and (2) being able to count object instances per class in a given image. Our proposed model modularly extends the successful StyleGAN2 architecture with a count-based conditioning as well as with a regression sub-network to count the number of generated objects per class during training. In experiments on three different datasets, we show that the proposed model learns to generate images according to the given multiple-class count condition even in the presence of complex backgrounds. In particular, we propose a new dataset, CityCount, which is derived from the Cityscapes street scenes dataset, to evaluate our approach in a challenging and practically relevant scenario.

Citations (2)

Summary

We haven't generated a summary for this paper yet.