Papers
Topics
Authors
Recent
2000 character limit reached

Post-Processing of MCMC

Published 30 Mar 2021 in stat.ME and stat.CO | (2103.16048v3)

Abstract: Markov chain Monte Carlo (MCMC) is the engine of modern Bayesian statistics, being used to approximate the posterior and derived quantities of interest. Despite this, the issue of how the output from a Markov chain is post-processed and reported is often overlooked. Convergence diagnostics can be used to control bias via burn-in removal, but these do not account for (common) situations where a limited computational budget engenders a bias-variance trade-off. The aim of this article is to review state-of-the-art techniques for post-processing Markov chain output. Our review covers methods based on discrepancy minimisation, which directly address the bias-variance trade-off, as well as general-purpose control variate methods for approximating expected quantities of interest.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.