Papers
Topics
Authors
Recent
2000 character limit reached

Score-oriented loss (SOL) functions

Published 29 Mar 2021 in cs.LG, cs.NA, and math.NA | (2103.15522v1)

Abstract: Loss functions engineering and the assessment of forecasting performances are two crucial and intertwined aspects of supervised machine learning. This paper focuses on binary classification to introduce a class of loss functions that are defined on probabilistic confusion matrices and that allow an automatic and a priori maximization of the skill scores. The performances of these loss functions are validated during the training phase of two experimental forecasting problems, thus showing that the probability distribution function associated with the confusion matrices significantly impacts the outcome of the score maximization process.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.