Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Xtreme Margin: A Tunable Loss Function for Binary Classification Problems (2211.00176v1)

Published 31 Oct 2022 in cs.LG, cs.AI, and cs.CV

Abstract: Loss functions drive the optimization of machine learning algorithms. The choice of a loss function can have a significant impact on the training of a model, and how the model learns the data. Binary classification is one of the major pillars of machine learning problems, used in medical imaging to failure detection applications. The most commonly used surrogate loss functions for binary classification include the binary cross-entropy and the hinge loss functions, which form the focus of our study. In this paper, we provide an overview of a novel loss function, the Xtreme Margin loss function. Unlike the binary cross-entropy and the hinge loss functions, this loss function provides researchers and practitioners flexibility with their training process, from maximizing precision and AUC score to maximizing conditional accuracy for a particular class, through tunable hyperparameters $\lambda_1$ and $\lambda_2$, i.e., changing their values will alter the training of a model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.