Papers
Topics
Authors
Recent
2000 character limit reached

InsertGNN: Can Graph Neural Networks Outperform Humans in TOEFL Sentence Insertion Problem?

Published 28 Mar 2021 in cs.CL | (2103.15066v2)

Abstract: Sentence insertion is an interesting NLP problem but received insufficient attention. Existing approaches in sentence ordering, text coherence, and question answering are neither suitable nor good enough at solving it. To bridge this gap, we propose InsertGNN, a simple yet effective model that represents the problem as a graph and adopts a hierarchical graph neural network (GNN) to learn the connection between sentences. We evaluate our method in our newly collected TOEFL dataset and further verify its effectiveness on the larger arXiv dataset using cross-domain learning. Extensive experiments demonstrate that InsertGNN outperforms all baselines by a large margin with an accuracy of 70\%, rivaling the average human test scores.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.