Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lower Bounds on the Generalization Error of Nonlinear Learning Models (2103.14723v3)

Published 26 Mar 2021 in stat.ML and cs.LG

Abstract: We study in this paper lower bounds for the generalization error of models derived from multi-layer neural networks, in the regime where the size of the layers is commensurate with the number of samples in the training data. We show that unbiased estimators have unacceptable performance for such nonlinear networks in this regime. We derive explicit generalization lower bounds for general biased estimators, in the cases of linear regression and of two-layered networks. In the linear case the bound is asymptotically tight. In the nonlinear case, we provide a comparison of our bounds with an empirical study of the stochastic gradient descent algorithm. The analysis uses elements from the theory of large random matrices.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.