Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Combating Adversaries with Anti-Adversaries (2103.14347v2)

Published 26 Mar 2021 in cs.LG and cs.CV

Abstract: Deep neural networks are vulnerable to small input perturbations known as adversarial attacks. Inspired by the fact that these adversaries are constructed by iteratively minimizing the confidence of a network for the true class label, we propose the anti-adversary layer, aimed at countering this effect. In particular, our layer generates an input perturbation in the opposite direction of the adversarial one and feeds the classifier a perturbed version of the input. Our approach is training-free and theoretically supported. We verify the effectiveness of our approach by combining our layer with both nominally and robustly trained models and conduct large-scale experiments from black-box to adaptive attacks on CIFAR10, CIFAR100, and ImageNet. Our layer significantly enhances model robustness while coming at no cost on clean accuracy.

Citations (20)

Summary

We haven't generated a summary for this paper yet.