Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

An Eigenmodel for Dynamic Multilayer Networks (2103.12831v1)

Published 23 Mar 2021 in stat.ME

Abstract: Dynamic multilayer networks frequently represent the structure of multiple co-evolving relations; however, statistical models are not well-developed for this prevalent network type. Here, we propose a new latent space model for dynamic multilayer networks. The key feature of our model is its ability to identify common time-varying structures shared by all layers while also accounting for layer-wise variation and degree heterogeneity. We establish the identifiability of the model's parameters and develop a structured mean-field variational inference approach to estimate the model's posterior, which scales to networks previously intractable to dynamic latent space models. We demonstrate the estimation procedure's accuracy and scalability on simulated networks. We apply the model to two real-world problems: discerning regional conflicts in a data set of international relations and quantifying infectious disease spread throughout a school based on the student's daily contact patterns.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.