Papers
Topics
Authors
Recent
2000 character limit reached

End-to-End Trainable Multi-Instance Pose Estimation with Transformers (2103.12115v2)

Published 22 Mar 2021 in cs.CV

Abstract: We propose an end-to-end trainable approach for multi-instance pose estimation, called POET (POse Estimation Transformer). Combining a convolutional neural network with a transformer encoder-decoder architecture, we formulate multiinstance pose estimation from images as a direct set prediction problem. Our model is able to directly regress the pose of all individuals, utilizing a bipartite matching scheme. POET is trained using a novel set-based global loss that consists of a keypoint loss, a visibility loss and a class loss. POET reasons about the relations between multiple detected individuals and the full image context to directly predict their poses in parallel. We show that POET achieves high accuracy on the COCO keypoint detection task while having less parameters and higher inference speed than other bottom-up and top-down approaches. Moreover, we show successful transfer learning when applying POET to animal pose estimation. To the best of our knowledge, this model is the first end-to-end trainable multi-instance pose estimation method and we hope it will serve as a simple and promising alternative.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.