Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lawyers are Dishonest? Quantifying Representational Harms in Commonsense Knowledge Resources (2103.11320v2)

Published 21 Mar 2021 in cs.CL

Abstract: Warning: this paper contains content that may be offensive or upsetting. Numerous natural language processing models have tried injecting commonsense by using the ConceptNet knowledge base to improve performance on different tasks. ConceptNet, however, is mostly crowdsourced from humans and may reflect human biases such as "lawyers are dishonest." It is important that these biases are not conflated with the notion of commonsense. We study this missing yet important problem by first defining and quantifying biases in ConceptNet as two types of representational harms: overgeneralization of polarized perceptions and representation disparity. We find that ConceptNet contains severe biases and disparities across four demographic categories. In addition, we analyze two downstream models that use ConceptNet as a source for commonsense knowledge and find the existence of biases in those models as well. We further propose a filtered-based bias-mitigation approach and examine its effectiveness. We show that our mitigation approach can reduce the issues in both resource and models but leads to a performance drop, leaving room for future work to build fairer and stronger commonsense models.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.