Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

The Interplay of Task Success and Dialogue Quality: An in-depth Evaluation in Task-Oriented Visual Dialogues (2103.11151v1)

Published 20 Mar 2021 in cs.CL

Abstract: When training a model on referential dialogue guessing games, the best model is usually chosen based on its task success. We show that in the popular end-to-end approach, this choice prevents the model from learning to generate linguistically richer dialogues, since the acquisition of language proficiency takes longer than learning the guessing task. By comparing models playing different games (GuessWhat, GuessWhich, and Mutual Friends), we show that this discrepancy is model- and task-agnostic. We investigate whether and when better language quality could lead to higher task success. We show that in GuessWhat, models could increase their accuracy if they learn to ground, encode, and decode also words that do not occur frequently in the training set.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.